skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davies, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this article we document the current analysis software training and onboarding activities in several High Energy Physics (HEP) experiments: ATLAS, CMS, LHCb, Belle II and DUNE. Fast and efficient onboarding of new collaboration members is increasingly important for HEP experiments. With rapidly increasing data volumes and larger collaborations the analyses and consequently, the related software, become ever more complex. This necessitates structured onboarding and training. Recognizing this, a meeting series was held by the HEP Software Foundation (HSF) in 2022 for experiments to showcase their initiatives. Here we document and analyze these in an attempt to determine a set of key considerations for future HEP experiments. 
    more » « less
    Free, publicly-accessible full text available February 9, 2026
  2. Abstract We present an analysis of Hubble Space Telescope COS/G160M observations of CIVin the inner circumgalactic medium (CGM) of a novel sample of eightz∼ 0,L≈Lgalaxies, paired with UV-bright QSOs at impact parameters (Rproj) between 25 and 130 kpc. The galaxies in this stellar-mass-controlled sample (log10M/M∼ 10.2–10.9M) host supermassive black holes (SMBHs) with dynamically measured masses spanning log10MBH/M∼ 6.8–8.4; this allows us to compare our results with models of galaxy formation where the integrated feedback history from the SMBH alters the CGM over long timescales. We find that the CIVcolumn density measurements (NC IV; average log10NC IV,CH= 13.94 ± 0.09 cm−2) are largely consistent with existing measurements from other surveys ofNC IVin the CGM (average log10NC IV,Lit= 13.90 ± 0.08 cm−2), but do not show obvious variation as a function of the SMBH mass. By contrast, specific star formation rate (sSFR) is highly correlated with the ionized content of the CGM. We find a large spread in sSFR for galaxies with log10MBH/M> 7.0, where the CGM CIVcontent shows a clear dependence on galaxy sSFR but notMBH. Our results do not indicate an obvious causal link between CGM CIVand the mass of the galaxy’s SMBH; however, through comparisons to the EAGLE, Romulus25, and IllustrisTNG simulations, we find that our sample is likely too small to constrain such causality. 
    more » « less
  3. Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- J / ψ μ + μ and\psi(2S)\to\mu^+\mu^- ψ ( 2 S ) μ + μ processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} s = 13 T e V with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 2 < η μ ± < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 σ J / ψ μ + μ ( 2.0 < y J / ψ < 4.5 , 2.0 < η μ ± < 4.5 ) = 400 ± 2 ± 5 ± 12 p b , σ ψ ( 2 S ) μ + μ ( 2.0 < y ψ ( 2 S ) < 4.5 , 2.0 < η μ ± < 4.5 ) = 9.40 ± 0.15 ± 0.13 ± 0.27 p b , where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) ψ ( 2 S ) andJ/\psi J / ψ cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} 1 T e V , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ J / ψ and\psi(2S) ψ ( 2 S ) cross-sections on the total transverse momentum transfer is determined inpp p p collisions and is found consistent with the behaviour observed in electron-proton collisions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026